Step of Proof: complete_nat_ind_with_y
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
complete
nat
ind
with
y
:
.....subterm..... T:t1:n
1.
P
:
{k}
2.
g
:
i
:
. (
j
:
i
.
P
(
j
))
P
(
i
)
Y(
f
,
x
.
g
(
x
,
f
))
(
i
:
.
P
(
i
))
latex
by Assert Y(
f
,
x
.
g
(
x
,
f
))
!Void()
!Void()
latex
1
: .....assertion..... NILNIL
1:
Y(
f
,
x
.
g
(
x
,
f
))
!Void()
!Void()
2
:
2:
3. Y(
f
,
x
.
g
(
x
,
f
))
!Void()
!Void()
2:
Y(
f
,
x
.
g
(
x
,
f
))
(
i
:
.
P
(
i
))
.
Definitions
t
T
,
x
:
A
B
(
x
)
,
!Void()
,
Y
,
x
.
A
(
x
)
,
f
(
a
)
origin